The carbon price thaw
Post-freeze future of the GB carbon price
Report for non-subscribers
1. **Historical context:** Introduction of the CPS was the main driver behind the phase out of coal generation since 2012

2. **Future scenarios:** The carbon price will be determined by UK policy goals and the UK’s participation in the EU ETS

3. **Market impacts to 2025:** Maintaining the carbon price at the current level risks a revival of coal generation in the early 2020s

4. **Market impacts post 2025:** Carbon prices will affect the buildout of low-carbon technologies, counter-acting the impact on wholesale prices

5. **System impacts:** The differences between carbon scenarios expose the scale of the trade-offs faced by the Government
Announcement on the future of the CPS is expected in the upcoming Autumn Budget

EU-ETS Price Drop
- Financial crisis and economic downturn led to oversupply of EU ETS allowances
- EUA price fell from €20-30/tonne in 2008 to €10-15 in 2009

Budget 2013
- Introduction of CPS at a rate of £16/tonne
- Given the fall in the EU-ETS price, the UK carbon price was around 5 times higher than in rest of EU

Budget 2014
- CPS frozen at 2015/16 level of £18/tonne
- Rationale to limit rise in wholesale and retail prices

Spring Budget 2017
- Revealed plans to reform the current CPS regime
- Plan to target a “total carbon price” was mentioned

Carbon Price Floor Consultation
- Mooted in Coalition Agreement
- Objective “to support and provide certainty for low carbon investment”
- Carbon price trajectory to £30/tonne in 2020, £70/tonne in 2030

Autumn Statement 2016
- Industry expected announcement on long term trajectory for CPS
- But none was provided, except for extending current price freeze until 2020/21

Autumn Budget 2017
- Announcement expected about the future of the CPS
- Uncertainty remains about UK’s participation in the EU ETS

1. The government confirmed it was maintaining the cap on CPS rates at £18t/CO2, updating this with inflation in 2020-21.
CPS was the key driver behind the rapid decline of coal generation since 2013

Historical context

Coal generation under different scenarios, TWh

- **April 2013:** Introduction Carbon Price Support
- **10 May 2016:** First hour without coal generation
- **21 April 2017:** First day without coal generation
- **July 2017:** Record low monthly contribution of 2%

Coal share of total generation,
% total generation, monthly figures

Source: Aurora Energy Research
Four main scenarios seem plausible and primarily depend on GB policy goals

<table>
<thead>
<tr>
<th>Scenario</th>
<th>CPS</th>
<th>EU-ETS</th>
<th>Total CO₂ price Trajectory</th>
<th>Description and rationale</th>
<th>Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Status Quo</td>
<td>Current</td>
<td>Base</td>
<td></td>
<td>• CPS top up remains constant post 2020/21 • Support coal phase-out and low carbon investment</td>
<td>High</td>
</tr>
<tr>
<td>2 Catch-up</td>
<td>Phase-out</td>
<td>Base</td>
<td></td>
<td>• Total UK carbon price remains flat with EU-ETS rising until convergence • Ensure competitiveness with EU</td>
<td>High</td>
</tr>
<tr>
<td>3 Low</td>
<td>Removal</td>
<td>Low</td>
<td></td>
<td>• CPS is removed post 2020/21 and EU-ETS never recovers • Lower electricity bills</td>
<td>Low</td>
</tr>
<tr>
<td>4 High</td>
<td>High</td>
<td>Base</td>
<td></td>
<td>• Government policy appraisal CO₂ price • Meet 4th and 5th carbon budgets</td>
<td>Low</td>
</tr>
</tbody>
</table>

Source: Aurora Energy Research
Market impacts to 2025

Changing fuel price dynamics mean a revival of coal is likely in the early 2020s in all but the High scenario

Avg. coal share of total generation 2021-25, %

- Two factors are likely to improve coal's competitiveness post 2020
 - First, the LNG glut is likely to clear in the early 2020s, inducing higher gas prices.
 - Second, with the removal of China’s production restrictions, coal price is likely to fall

- Coal generation is limited by the level of capacity still in the market in early 2020s, as well as IED running hour constraint of 1,500hrs for all plant except Drax and Ratcliffe

- Only the High scenario leads to significantly lower coal generation. Even then, regulation may still be required to complete the coal phase out

Max possible generation based on IED

Status Quo	Catch-up	Low	High

Source: Aurora Energy Research
Given central commodity forecasts, the economic phase-out of coal would require CO₂ prices to rise above £40/tCO₂ by 2025.

Given our central commodity price assumptions, we would expect a revival of coal in the Status Quo scenario.

Phasing out coal using carbon prices alone would require CO₂ prices to double to at least £40/tonne by 2025 (as in High scenario).

However, the question remains as to how many coal plant will survive this long.

Clear and credible signalling of the future carbon price would critically influence decisions on whether to stay online or close.
In the long-term, several factors are likely to counter-act the impact of changes in the carbon price on wholesale prices

Simplified causal mechanism

1. **Example:** Higher wholesale price could increase deployment of subsidised and unsubsidised renewables

 - **Positive feedback:** amplifying factor
 - **Negative feedback:** stabilising factor

 - All else held equal, a higher carbon price would translate into a higher wholesale price
 - However, there are several factors which counteract this effect
 - For example, a higher UK wholesale price could incentivise more renewable deployment, exerting downward pressure on wholesale prices
 - As a result, the carbon price is likely to have a significantly smaller effect on wholesale prices than one would expect through adding the top-up to the marginal gas plant

1. Short-run marginal cost.

Source: Aurora Energy Research
Without stabilising factors, wholesale price would be considerably higher in the High scenario.

Avg. wholesale baseload price 2026-35, £/MWh

- All else equal, increasing the carbon price would increase wholesale prices significantly.
- The entry of additional renewables and other factors would mitigate some of this increase.
- However, credible signalling of the long-term carbon price trajectory is key to incentivising additional deployment of renewables.

Source: Aurora Energy Research
If EU carbon prices catch up with the UK, interconnector imports will drop considerably

Net electricity imports to GB in 2035, TWh

- If EU ETS price converges with the current UK price, then this will undermine interconnector economics and imports
- Low carbon price in the Low scenario causes an increase in coal production in Europe, increasing UK imports
- Following Brexit, the UK may need to consider changes to carbon accounting rules to reflect UK production (rather than share of traded emissions)

<table>
<thead>
<tr>
<th>Status Quo</th>
<th>Catch-up</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>46 (29)</td>
<td>29 (29)</td>
<td>6 (6)</td>
</tr>
</tbody>
</table>

Total UK CO₂ price 2035, £/tCO₂
- EUA price 2035, £/tCO₂

Source: Aurora Energy Research
System impacts

Differences between scenarios expose the scale of trade-offs faced by the Government

<table>
<thead>
<tr>
<th>Scenario</th>
<th>A Emissions</th>
<th>B Affordability</th>
<th>C Tax Receipts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Status Quo</td>
<td>CO₂ intensity, 2030, gCO₂e/kWh</td>
<td>Avg. yearly total cost¹, 2021 – 2035, £bn</td>
<td>Avg. yearly CO₂ tax receipts, 2021 – 2025, £m</td>
</tr>
<tr>
<td>2 Catch-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Low</td>
<td>100g/kWh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 High</td>
<td>100g/kWh</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Considers wholesale, CfD and Capacity Market costs.

Source: Aurora Energy Research
Key takeaways

Introduction of the Carbon Price Support was the main factor behind the decline of coal generation in GB since 2012.

Changing fuel price dynamics could lead to a revival of coal in the early 2020s. Phasing out coal using carbon prices alone would require the price to double to over £40/tonne by 2025.

Maintaining the total UK carbon price around the current level would be sufficient to hit the 2030 power sector target of 100g/kWh, but the revival of coal in the early 2020s would undermine the achievement of the 4th Carbon Budget.

Source: Aurora Energy Research
Aurora’s products and services

Subscription services

GB Power Market Service

- Comprehensive service package for all power market participants to keep you up-to-date with latest views and trends
 - **Quarterly Market Forecasts to 2040** including prices, price shape, spreads, capacity and generation mix development, capacity market results, capture prices for all technologies
 - Regular policy updates and resulting implications
 - **Strategic Insight Reports** focussing on topical issue in Power Sector (eg. Carbon pricing, Subsidy-free renewables, CM)
 - Extensive interaction through **Group Meeting Discussions**, bilateral workshops and on-going analyst support

Commissioned Projects

Bespoke analytics and advisory services, combining the power of Aurora’s market forecasting with experienced expert consultants

- **Due diligence, transaction support and valuation**
- Revenue stream forecasts specific to your project and investment case stress-testing
- Capacity market and ancillary service auction bidding support
- Policy analysis, public reports, strategy and more
- Experience covers batteries, peakers, renewables, pumped storage, OCGT, flexible CCGT, waste from energy, DSR

GB Distributed and Flexible Energy Service

- Comprehensive service package for developers and investors in battery storage, peaking plants and DSR
 - **Granular Market Forecasts to 2040** incl. revenue forecasts for the wholesale market, balancing mechanism, capacity market, ancillary services – **industry-standard and bankable**
 - **Forecast Data in xls** to build your own business case
 - Market, policy and technology outlook
 - Monthly FFR and balancing mechanism analysis package
 - Interaction with Aurora team to keep you up-to-date with this rapidly evolving market

Contact sebastian.just@auroraer.com for more information or visit auroraer.com
General Disclaimer
This document is provided “as is” for your information only and no representation or warranty, express or implied, is given by Aurora Energy Research Limited (“Aurora”), its directors, employees, agents or affiliates (together its “Associates”) as to its accuracy, reliability or completeness. Aurora and its Associates assume no responsibility, and accept no liability for, any loss arising out of your use of this document. This document is not to be relied upon for any purpose or used in substitution for your own independent investigations and sound judgment. The information contained in this document reflects our beliefs, assumptions, intentions and expectations as of the date of this document and is subject to change. Aurora assumes no obligation, and does not intend, to update this information.

Forward looking statements
This document contains forward-looking statements and information, which reflect Aurora’s current view with respect to future events and financial performance. When used in this document, the words "believes", "expects", "plans", "may", "will", "would", "could", "should", "anticipates", "estimates", "project", "intend" or "outlook" or other variations of these words or other similar expressions are intended to identify forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information. Actual results may differ materially from the expectations expressed or implied in the forward-looking statements and information.

Copyright
This document and its content (including, but not limited to, the text, images, graphics and illustrations) is the copyright material of Aurora [unless otherwise stated]. No part of this document may be copied, reproduced, distributed or in any way used for commercial purposes without the prior written consent of Aurora.